GAMES103 Lab 3: Bouncy House
Due Date: 01/03,/2021, 11:59PM

In this lab assignment, we will implement the finite element method for elastic body simulation.
For simplicity, we will consider the simple St. Venant-Kirchhoff (StVK) model for elasticity. We will
use explicit time integration, so the key component is the calculation of every vertex force.

To begin with, please download and import the example package. This package contains the code
for a tetrahedral mesh of a house model. It also contains some functions useful for the assignment,
such as singular value decomposition of a 3-by-3 matrix. The example script also contains the code
for creating a single tetrahedron. You may use that for testing purposes.

1 Basic Tasks

l.a. Basic setup (2 Points) In the Update function, write the simulation of the house as a
simple particle system. Every vertex has its own position x and velocity v, and the velocity is under
the influence of gravity. Please also implement frictional contact between every vertex and the floor.
Since this project uses a relatively small time step, the Update function calls _Update ten times.
After that, the function contains the code to send vertex positions into the house mesh for display.

1.b. Edge matrices (2 Points). Next, write a Build_Edge Matrix function that returns the edge
matrix of a tetrahedron. In the Start function, call this function to calculate inv_Dm, the inverse of
the reference edge matrix for every tetrahedron.

1.b. Elastic Forces (4 Points). Follow the slides to implement the elastic forces, based on the
finite element method. Specifically, for every tetrahedron, calculate the deformation gradient F, the
Green strain G = 3 (FTF —I), the second Piola-Kirchhoff stress S = 251G + sotr(G)I, and finally
the forces for the four vertices.

1.d. Laplacian smoothing (1 Point). Since we use explicit time integration, the simulation is
susceptible to numerical instability. Damping implemented in 1.a is crucial to numerical stability, but
it cannot eliminate high-frequency oscillation. To address this problem, please implement Laplacian
smoothing over the vertex velocities. To do so, for every vertex, sum up all of its neighbor’s velocities
and then blend it into its own velocity. Can you do this without using any neighborhood topology?

2 Bonus Tasks (4 points)

An alternative way of calculating the stress is to treat the strain energy density as a function of matrix
invariants, or principal stretches. This allows us to more conveniently adopt arbitrary hyperelastic
models. Given the SVD function already being provided, can you implement this idea with the StVK
model and show that the result is equivalent? (Hint: The instructor’s website has CUDA code for
GPU-based hyperelastic simulation in C++. You can use that for reference.)

3 Submission Guideline

Save all of your files, including scene and script files, and export them into a package. Submit your
package by the SmartChair system.



